Likelihood and entropy for statistical inversion

نویسندگان

  • Z. Hradil
  • J. Řeháček
چکیده

Two celebrated statistical principlesPrinciple of Maximum Likelihood and Principle of Maximum Entropy are merged establishing a novel estimation scheme for statistical inversion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation for the Type-II Extreme Value Distribution Based on Progressive Type-II Censoring

In this paper, we discuss the statistical inference on the unknown parameters and reliability function of type-II extreme value (EVII) distribution when the observed data are progressively type-II censored. By applying EM algorithm, we obtain maximum likelihood estimates (MLEs). We also suggest approximate maximum likelihood estimators (AMLEs), which have explicit expressions. We provide Bayes ...

متن کامل

Entropy and Divergence Associated with Power Function and the Statistical Application

In statistical physics, Boltzmann-Shannon entropy provides good understanding for the equilibrium states of a number of phenomena. In statistics, the entropy corresponds to the maximum likelihood method, in which Kullback-Leibler divergence connects Boltzmann-Shannon entropy and the expected log-likelihood function. The maximum likelihood estimation has been supported for the optimal performanc...

متن کامل

Some statistical inferences on the upper record of Lomax distribution

In this paper, we investigate some inferential properties of the upper record Lomax distribution. Also, we will estimate the upper record of the Lomax distribution parameters using methods, Moment (MME), Maximum Likelihood (MLE), Kullback-Leibler Divergence of the Survival function (DLS) and Baysian. Finally, we will compare these methods using the Monte Carlo simulation.

متن کامل

Stochastic Comparisons of Series and Parallel Systems with Heterogeneous Extended Generalized Exponential Components

In this paper, we discuss the usual stochastic‎, ‎likelihood ratio, ‎dispersive and convex transform order between two parallel systems with independent heterogeneous extended generalized exponential components. ‎We also establish the usual stochastic order between series systems from two independent heterogeneous extended generalized exponential samples. ‎Finally, ‎we f...

متن کامل

Entropic Priors *

The method of Maximum (relative) Entropy (ME) is used to translate the information contained in the known form of the likelihood into a prior distribution for Bayesian inference. The argument is guided by intuition gained from the successful use of ME methods in statistical mechanics. For experiments that cannot be repeated the resulting “entropic prior” is formally identical with the Einstein ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006